
CPE 470 - SoC Design

SoC ASIC Design Glossary
SoC: System on Chip
IP: Intellectual Property

● SoC: both a category and a methodology
○ Category: any system that integrates a processor

with its peripherals
■ memory, IO, storage, flash, DSP, accelerators, etc.
■ Examples: Apple A-Series, Qualcomm

Snapdragon
■ As opposed to a chip that is just a CPU

○ Methodology: a way of designing chips with a
focus on integration, design reuse, and IP blocks
■ License or use pre-made and tested blocks
■ Spend development time on high

performing interconnects
■ Don’t reinvent the wheel of a processor

Intellectual Property
● Hard IP: fully laid out design

○ Analog (DACs/ADCs) and RAM will always be hard IP
○ Specific to one PDK, not transferable
○ User has to trust vendor

● Soft IP: RTL code for a design
○ User has to synthesize, PNR, etc
○ Vendor has to carefully control access, could get leaked

● Firm IP: post-synthesis netlist of design
○ User still has to PNR, but can expect similar performance
○ Less risky for vendor

● Many companies exist primarily on licensing IP
○ Synopsys and Cadence of course
○ Processors → ARM
○ DRAM → Lattice, Altera SRAM Hard IP

A Pre-SoC era
● Entire Die area of a chip is devoted to CPU (+ cache

and others)
○ Requires external short and long term memory

■ DRAM for short term
■ Drives for long term

○ Has to expose entire main memory bus to
motherboard
■ 1700 + pins

○ Cannot function on its own → is a piece of a
system

● Not everything has to be an SoC!
○ Sacrifices die area that could be used for

compute
■ Ex: graphics cards need tons of die area
■ Still might use SoC design principles

○ No upgradability

Not SoCs!

Why SoC?
● Physical Size Constraints

○ Integrate all necessary components in
one package, less space

● Unit Cost
○ Long run unit cost is quite low despite

high up-front cost
○ Cheaper than buying each individual

components and manufacturing
● Performance

○ Cache Misses rarely leave the chip,
memory is local

○ As opposed to:
■ Bus → IO Pin → Wirebond → Package

Pin → PCB → RAM Pin → Ram
Wirebond → RAM

■ And back

Size Constraints: ESP32 Pico SoC

Performance Benefits: Apple M Series

Homogeneous vs Heterogeneous SoCs

● Homogeneous: composed of
many of the same processor
○ Simpler multithreading as all

cores share ISA

● Heterogenous: composed of different kinds of
processors (same or different ISAs)
○ Can optimize for power by using smaller cores
○ Different ISAs complicates multithreading

SoC Applications: Networking

● High performance networking pushes to Terabits per second
○ How do you get 1012 bits to in and out of a system in a second?

● Packets have to go through many layers to get from wire to chip
○ Wire → Transceiver → PHY → MAC → CPU

● SoC Design for networking more tightly couples layers with the CPU
○ Bring MAC or even PHY into the SoC

SoC Example: NVIDIA BlueField3
● 400 Gbps DPU

○ High Speed Packet Processor
● Follows SoC Design Principles

○ Processor: Arm IP
○ ConnectX-7 Switch: Mellanox IP

■ NVIDIA bought Mellanox
○ Accelerators and connectivity: likely

mix of own and purchased IP
● Accelerators

○ Cryptographic
■ AES, SHA, ECC, Diffie Hellman

○ Networking
■ IP, TCP, UDP Offload, etc.

● Heterogeneous Architecture
○ 16 Arm cores
○ ~200 Tiny Risc-V cores

● Connectivity
○ DDR5 & PCIE 5

Glossary
DPU: Data Processing Unit

BlueField3 Takeaways

● So NVIDIA bought/reused a bunch of IP.
What is the big deal?
○ The work is in the interconnects!
○ Need extremely high throughput bus

architecture to connect all components at
0.4 Tbps

● How do you provide data to an accelerator
with 200 RISC-V-32 Cores
○ Cannot use classical techniques of having a

200-port memory
○ Have to move to more complex bus

architectures and multi-level caching
● Integration is the primary focus of an SoC

designer!

- Qualcomm already had good modem
chips…

- … but how can they break into the mobile
market?

- Generalized the modem core to be
multipurpose
- Hexagon DSP:
- With TCM you can have

application/specific code at L2 Cache
speeds!
- aDSP: Application Specific
- mDSP: Modem specific
- … later NPU essentially just used

this!

Glossary
TCM: Tightly Coupled
Memory, cache that is loaded
manually by the user

Example: Qualcomm DSP

- Qualcomm wanted to
start sniffing that AI
Dough
- How can they pull

an EA and Ctrl+C
Ctrl+V their existing
stuff?

- Ans: Just use the
DSP (it’s pretty
close) but add SIMD
and Vector/Tensor
support

- TCM acts as a way
to cushion
scatter/gather
operations

- Conclusion: Use memory
in related regions! The
memory gave them
performance.

Example: Hexagon NPU
Glossary

Gather/Scatter: Vectors are
often transformed from data
that is not contiguously in
memory

References
● https://www.synopsys.com/blogs/chip-design/system-on-chip-design.html
● https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/docu

ments/datasheet-nvidia-bluefield-3-dpu.pdf
● https://chipsandcheese.com/p/qualcomms-hexagon-dsp-and-now-npu

https://www.synopsys.com/blogs/chip-design/system-on-chip-design.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://chipsandcheese.com/p/qualcomms-hexagon-dsp-and-now-npu

