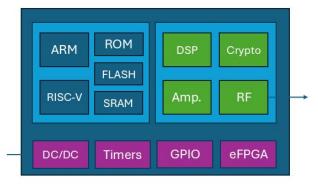
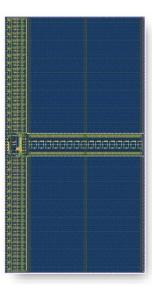

CPE 470 - SoC Design


SoC ASIC Design

- SoC: both a category and a methodology
 - Category: any system that integrates a processor with its peripherals
 - memory, IO, storage, flash, DSP, accelerators, etc.
 - Examples: Apple A-Series, Qualcomm Snapdragon
 - As opposed to a chip that is just a CPU
 - Methodology: a way of designing chips with a focus on integration, design reuse, and IP blocks
 - License or use pre-made and tested blocks
 - Spend development time on high performing interconnects
 - Don't reinvent the wheel of a processor

Glossary


SoC: System on Chip

IP: Intellectual Property

Intellectual Property

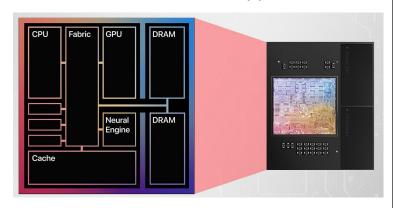
- Hard IP: fully laid out design
 - Analog (DACs/ADCs) and RAM will always be hard IP
 - Specific to one PDK, not transferable
 - User has to trust vendor
- **Soft IP:** RTL code for a design
 - User has to synthesize, PNR, etc
 - Vendor has to carefully control access, could get leaked
- Firm IP: post-synthesis netlist of design
 - User still has to PNR, but can expect similar performance
 - Less risky for vendor
- Many companies exist primarily on licensing IP
 - Synopsys and Cadence of course
 - Processors → ARM
 - \circ DRAM \rightarrow Lattice, Altera

SRAM Hard IP

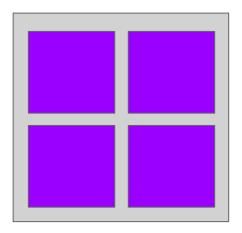
A Pre-SoC era

- Entire Die area of a chip is devoted to CPU (+ cache and others)
 - Requires external short and long term memory
 - DRAM for short term
 - Drives for long term
 - Has to expose entire main memory bus to motherboard
 - 1700 + pins
 - Cannot function on its own → is a piece of a system
- Not everything has to be an SoC!
 - Sacrifices die area that could be used for compute
 - Ex: graphics cards need tons of die area
 - Still might use SoC design principles
 - No upgradability

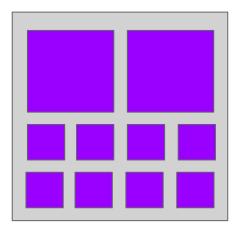
Not SoCs!


Why SoC?

- Physical Size Constraints
 - Integrate all necessary components in one package, less space
- Unit Cost
 - Long run unit cost is quite low despite high up-front cost
 - Cheaper than buying each individual components and manufacturing
- Performance
 - Cache Misses rarely leave the chip, memory is local
 - As opposed to:
 - Bus → IO Pin → Wirebond → Package Pin → PCB → RAM Pin → Ram Wirebond → RAM
 - And back

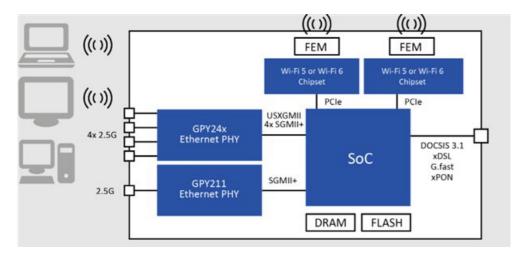

Size Constraints: ESP32 Pico SoC

Performance Benefits: Apple M Series



Homogeneous vs Heterogeneous SoCs

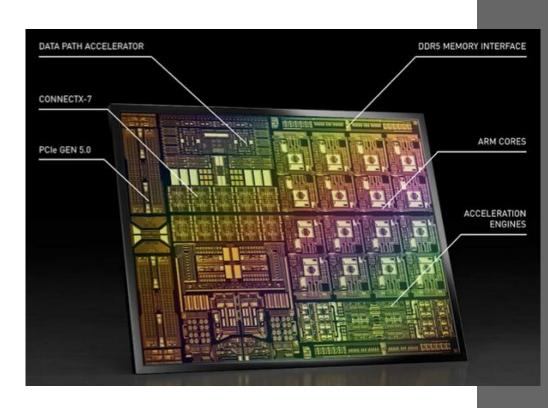
- Homogeneous: composed of many of the same processor
 - Simpler multithreading as all cores share ISA



- Heterogenous: composed of different kinds of processors (same or different ISAs)
 - Can optimize for power by using smaller cores
 - Different ISAs complicates multithreading

SoC Applications: Networking

- High performance networking pushes to Terabits per second
 - \circ How do you get 10^{12} bits to in and out of a system in a second?
- Packets have to go through many layers to get from wire to chip
 - \circ Wire \rightarrow Transceiver \rightarrow PHY \rightarrow MAC \rightarrow CPU
- SoC Design for networking more tightly couples layers with the CPU
 - Bring MAC or even PHY into the SoC



SoC Example: NVIDIA BlueField3

Glossary

DPU: Data Processing Unit

- 400 Gbps DPU
 - High Speed Packet Processor
- Follows SoC Design Principles
 - Processor: Arm IP
 - ConnectX-7 Switch: Mellanox IP
 - NVIDIA bought Mellanox
 - Accelerators and connectivity: likely mix of own and purchased IP
- Accelerators
 - Cryptographic
 - AES, SHA, ECC, Diffie Hellman
 - Networking
 - IP, TCP, UDP Offload, etc.
- Heterogeneous Architecture
 - o 16 Arm cores
 - ~200 Tiny Risc-V cores
- Connectivity
 - O DDR5 & PCIE 5

BlueField3 Takeaways

- So NVIDIA bought/reused a bunch of IP.
 What is the big deal?
 - The work is in the interconnects!
 - Need extremely high throughput bus architecture to connect all components at 0.4 Tbps
- How do you provide data to an accelerator with 200 RISC-V-32 Cores
 - Cannot use classical techniques of having a 200-port memory
 - Have to move to more complex bus architectures and multi-level caching
- Integration is the primary focus of an SoC designer!

Example: Qualcomm DSP

- Qualcomm already had good modem chips...
- ... but how can they break into the mobile market?
- Generalized the modem core to be multipurpose
 - Hexagon DSP:
 - With TCM you can have application/specific code at L2 Cache speeds!
 - aDSP: Application Specific
 - mDSP: Modem specific
 - ... later NPU essentially just used this!

Glossary

TCM: Tightly Coupled Memory, cache that is loaded manually by the user

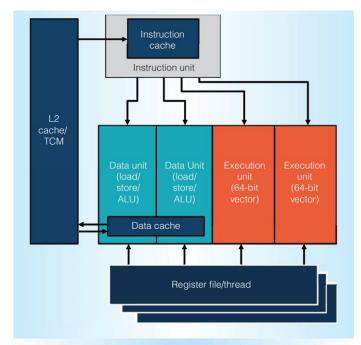


Figure 3. Hexagon block diagram. The architecture features a four-wide very long instruction word (VLIW) with dual load/store and dual single-instruction, multiple-data (SIMD) execution units and supports hardware multithreading.

Example: Hexagon NPU

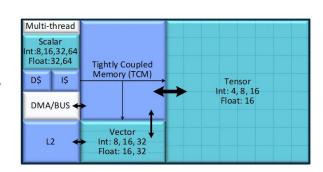
- Qualcomm wanted to start sniffing that AI Dough
 - How can they pull an EA and Ctrl+C Ctrl+V their existing stuff?
 - Ans: Just use the DSP (it's pretty close) but add SIMD and Vector/Tensor support
 - TCM acts as a way to cushion scatter/gather operations
- Conclusion: Use memory in related regions! The memory gave them performance.

Hexagon NPU

· Processor executing 3 instruction sets:

- · Scalar: For control flow and general purpose
- Vector: General purpose data-parallel compute
- · Tensor: Matrix multiply and convolutional layer
- Over multiple threads using shared memories (core local & cached DDR)

DSP features:


- VLIW, hardware looping
- Targets DSP and compute-heavy workloads

CPU-like features:

- Virtual \rightarrow Physical translation, security, caching
- Branching (call/return/indirect), exceptions, interrupts
- Conventional software tools (including LLVM)

Glossary

Gather/Scatter: Vectors are often transformed from data that is not contiguously in memory

- Maximized efficient single-core performance
- · Make the most of resources

References

- https://www.synopsys.com/blogs/chip-design/system-on-chip-design.html
- https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/docu ments/datasheet-nvidia-bluefield-3-dpu.pdf
- https://chipsandcheese.com/p/qualcomms-hexagon-dsp-and-now-npu